Title

Stony meteorite thermal properties and their relationship with meteorite chemical and physical states

Authors

Authors

C. P. O. Sj; G. J. C. Sj; D. J. Safarik;D. T. Britt

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Meteorit. Planet. Sci.

Keywords

MAGNETIC-SUSCEPTIBILITY; MARTIAN METEORITE; LOS-ANGELES; CHONDRITES; POROSITY; DENSITY; TEMPERATURE; ENSTATITE; Geochemistry & Geophysics

Abstract

In our ongoing survey of meteorite physical properties, we have to date measured the thermal conductivity for seventeen stony meteorites at temperatures ranging from 5 K to 300 K. Here, we report new results for nine ordinary chondrites, one enstatite chondrite, and the basaltic achondrites Frankfort (howardite) and Los Angeles (shergottite). We find that thermal conductivity is significantly lower than would be expected from averaging the laboratory conductivities of their constituent minerals, with a dependence on temperature different from the expected conductivity of pure minerals. In addition, we find a linear relationship between the inverse of the porosity of the samples measured and their thermal conductivity, regardless of meteorite composition or type. We conclude that thermal conductivity is controlled by the presence of shock-induced microcracks within the meteorites, which provide a barrier to the transmission of thermal energy via phonons. In contrast to conductivity, our first measurement of heat capacity as a function of temperature (on Los Angeles) suggests that heat capacity is primarily a function of oxide composition and is not strongly affected by the physical state of the sample.

Journal Title

Meteoritics & Planetary Science

Volume

47

Issue/Number

3

Publication Date

1-1-2012

Document Type

Article

Language

English

First Page

319

Last Page

329

WOS Identifier

WOS:000302073300001

ISSN

1086-9379

Share

COinS