Title
A Study of Heat Transfer Augmentation for Recuperative Heat Exchangers: Comparison Between Three Dimple Geometries
Abbreviated Journal Title
J. Eng. Gas. Turbines Power-Trans. ASME
Keywords
FLOW STRUCTURE; TRANSFER ENHANCEMENT; NUSSELT NUMBERS; CHANNEL; FRICTION; SURFACES; DEPTH; Engineering, Mechanical
Abstract
This study presents an investigation of the heat transfer augmentation for the purpose of obtaining high effectiveness recuperative heat exchangers for waste heat recovery. The focus of the present work is in the fully developed portion of a 2:1 aspect ratio rectangular channel characterized by dimples applied to one wall at channel Reynolds numbers of 10,000, 18,000, 28,000, and 36,000. The dimples are applied in a staggered-row, race-track configuration. In this study, a segmented copper test section was embedded with insulated dimples in order to isolate the heat transfer within the dimpled feature. The insulated material used to create a dimpled geometry isolates the heat transfer within the dimple cavity from the heat transfer augmentation on the surrounding smooth walls promoted by the flow disturbances induced by the dimple. Results for three different geometries are presented, a small dimple feature, a large dimple, and a double dimple. The results of this study indicate that there is significant heat transfer augmentation even on the nonfeatured portion of the channel wall resulting from the secondary flows created by the features. Overall heat transfer augmentations for the small dimples are between 13-27%, large dimples between 33-54%, and double dimples between 22-39%, with the highest heat transfer augmentation at the lowest Reynolds number for all three dimple geometries tested. Heat transfer within the dimple was shown to be less than that of the surrounding flat regions at low Reynolds numbers. Results for each dimple geometry show that dimples are capable of promoting heat transfer over the entire bottom wall surface as well as the side walls; thus the effects are not confined to within the dimple cavity. [DOI: 10.1115/1.4005990]
Journal Title
Journal of Engineering for Gas Turbines and Power-Transactions of the Asme
Volume
134
Issue/Number
7
Publication Date
1-1-2012
Document Type
Article
DOI Link
Language
English
First Page
9
WOS Identifier
ISSN
0742-4795
Recommended Citation
"A Study of Heat Transfer Augmentation for Recuperative Heat Exchangers: Comparison Between Three Dimple Geometries" (2012). Faculty Bibliography 2010s. 3413.
https://stars.library.ucf.edu/facultybib2010/3413
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu