Abbreviated Journal Title
Sci Rep
Keywords
TRANSIENT ABSORPTION; EXTREME-ULTRAVIOLET; ATTOSECOND; HELIUM; FIELDS; Multidisciplinary Sciences
Abstract
Understanding and controlling the dynamic evolution of electrons in matter is among the most fundamental goals of attosecond science. While the most exotic behaviors can be found in complex systems, fast electron dynamics can be studied at the fundamental level in atomic systems, using moderately intense (less than or similar to 10(13) W/cm(2)) lasers to control the electronic structure in proof-of-principle experiments. Here, we probe the transient changes in the absorption of an isolated attosecond extreme ultraviolet (XUV) pulse by helium atoms in the presence of a delayed, few-cycle near infrared (NIR) laser pulse, which uncovers absorption structures corresponding to laser-induced "virtual" intermediate states in the two-color two-photon (XUV+NIR) and three-photon (XUV+NIR+NIR) absorption process. These previously unobserved absorption structures are modulated on half-cycle (similar to 1.3 fs) and quarter-cycle (similar to 0.6 fs) timescales, resulting from quantum optical interference in the laser-driven atom.
Journal Title
Scientific Reports
Volume
3
Publication Date
1-1-2013
Document Type
Article
DOI Link
Language
English
First Page
6
WOS Identifier
ISSN
2045-2322
Recommended Citation
Chini, Michael; Wang, Xiaowei; Cheng, Yan; Wu, Yi; Zhao, Di; Telnov, Dmitry A.; Chu, Shih-l; and Chang, Zenghu, "Sub-cycle Oscillations in Virtual States Brought to Light" (2013). Faculty Bibliography 2010s. 3807.
https://stars.library.ucf.edu/facultybib2010/3807
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu