Title
Influence of precursor gas ratio and firing on silicon surface passivation by APCVD aluminium oxide
Abbreviated Journal Title
Phys. Status Solidi-Rapid Res. Lett.
Keywords
atmospheric pressure CVD; silicon; passivation; aluminum oxide; CHEMICAL-VAPOR-DEPOSITION; ATOMIC-LAYER DEPOSITION; SOLAR-CELLS; AL2O3; SEMICONDUCTORS; TEMPERATURE; MORPHOLOGY; PECVD; ALD; Materials Science, Multidisciplinary; Physics, Applied; Physics, ; Condensed Matter
Abstract
Using a high throughput, in-line atmosphere chemical vapor deposition (APCVD) tool, we have synthesized amorphous aluminum oxide (AlOx) films from precursors of trimethyl-aluminum (TMA) and O-2, yielding a maximum deposition 150 nm min(-1) per wafer. For p-type crystalline silicon (c-Si) wafers, excellent surface passivation was achieved with the APCVD AlOx films, with a best maximum effective surface recombination velocity (S-eff,S-max) of 8 cm/s following a standard industrial firing step. The findings could be attributed to the existence of large negative charge (Q(f) approximate to -3 x 10(12) cm(-2)) and low interface defect density (D-it approximate to 4 x 10(11) eV(-1) cm(-2)) achieved by the films. This data demonstrates a high potential for APCVD AlOx to be used in high efficiency, low cost industrial solar cells. ((c) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Journal Title
Physica Status Solidi-Rapid Research Letters
Volume
7
Issue/Number
11
Publication Date
1-1-2013
Document Type
Article
Language
English
First Page
942
Last Page
945
WOS Identifier
ISSN
1862-6254
Recommended Citation
"Influence of precursor gas ratio and firing on silicon surface passivation by APCVD aluminium oxide" (2013). Faculty Bibliography 2010s. 3866.
https://stars.library.ucf.edu/facultybib2010/3866
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu