Title
Influence of pore friction on the universal aspects of driven polymer translocation
Abbreviated Journal Title
Epl
Keywords
DYNAMICS; NANOPORE; EXPONENTS; MEMBRANE; Physics, Multidisciplinary
Abstract
We derive a scaling ansatz for the mean first passage time (MFPT) tau of a driven polymer chain through a nanopore as a function of the chain length N, the external bias f, and the effective pore-polymer friction eta, and demonstrate that the pore-polymer interaction, which we introduce as a correction term to asymptotic scaling, is responsible for the dominant finite-size effect. This ansatz provides a simple procedure to extract the asymptotic tau in the large-N limit from a finite chain length data (obtained either from experiment or simulation) by eliminating the correction-to-scaling term. We validate the ansatz applying it on a large set of data for tau obtained using Brownian dynamics (BD) and Brownian dynamics tension propagation (BDTP) simulation results (Ikonen T. et al., Phys. Rev. E, 85 (2012) 051803; J. Chem. Phys., 137 (2013) 085101) for a variety of combination for N, f, and eta. As an important practical application we demonstrate how the rescaling procedure can be used to quantitatively estimate the magnitude of the pore-polymer interaction from simulations or experimental data. Finally, we extend the BDTP theory to incorporate Zimm dynamics and find that the asymptotic results for tau (or the translocation exponent) remains unaltered with the inclusion of the hydrodynamics interactions (HI), although the convergence is slower than what we observe for Rouse dynamics. Using the rescaling ansatz we find that these new findings are in good agreement with the existing experimental results as well as with lattice Boltzmann results for driven polymer translocation (PT) for small N. Copyright (C) EPLA, 2013
Journal Title
Epl
Volume
103
Issue/Number
3
Publication Date
1-1-2013
Document Type
Article
Language
English
First Page
6
WOS Identifier
ISSN
0295-5075
Recommended Citation
"Influence of pore friction on the universal aspects of driven polymer translocation" (2013). Faculty Bibliography 2010s. 4138.
https://stars.library.ucf.edu/facultybib2010/4138
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu