Title

Influence of pore friction on the universal aspects of driven polymer translocation

Authors

Authors

T. Ikonen; A. Bhattacharya; T. Ala-Nissila;W. Sung

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Epl

Keywords

DYNAMICS; NANOPORE; EXPONENTS; MEMBRANE; Physics, Multidisciplinary

Abstract

We derive a scaling ansatz for the mean first passage time (MFPT) tau of a driven polymer chain through a nanopore as a function of the chain length N, the external bias f, and the effective pore-polymer friction eta, and demonstrate that the pore-polymer interaction, which we introduce as a correction term to asymptotic scaling, is responsible for the dominant finite-size effect. This ansatz provides a simple procedure to extract the asymptotic tau in the large-N limit from a finite chain length data (obtained either from experiment or simulation) by eliminating the correction-to-scaling term. We validate the ansatz applying it on a large set of data for tau obtained using Brownian dynamics (BD) and Brownian dynamics tension propagation (BDTP) simulation results (Ikonen T. et al., Phys. Rev. E, 85 (2012) 051803; J. Chem. Phys., 137 (2013) 085101) for a variety of combination for N, f, and eta. As an important practical application we demonstrate how the rescaling procedure can be used to quantitatively estimate the magnitude of the pore-polymer interaction from simulations or experimental data. Finally, we extend the BDTP theory to incorporate Zimm dynamics and find that the asymptotic results for tau (or the translocation exponent) remains unaltered with the inclusion of the hydrodynamics interactions (HI), although the convergence is slower than what we observe for Rouse dynamics. Using the rescaling ansatz we find that these new findings are in good agreement with the existing experimental results as well as with lattice Boltzmann results for driven polymer translocation (PT) for small N. Copyright (C) EPLA, 2013

Journal Title

Epl

Volume

103

Issue/Number

3

Publication Date

1-1-2013

Document Type

Article

Language

English

First Page

6

WOS Identifier

WOS:000323984500032

ISSN

0295-5075

Share

COinS