Title

Improved Hurricane Ocean Vector Winds Using SeaWinds Active/Passive Retrievals

Authors

Authors

P. Laupattarakasem; W. L. Jones; C. C. Hennon; J. R. Allard; A. R. Harless;P. G. Black

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

IEEE Trans. Geosci. Remote Sensing

Keywords

H* Wind; hurricane retrieval; ocean vector wind (OVW) retrieval; QuikSCAT; rain correction; scatterometer; SeaWinds; TROPICAL CYCLONES; SYSTEM; RADAR; NSCAT; MODEL; BAND; HRD; Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote; Sensing; Imaging Science & Photographic Technology

Abstract

The SeaWinds scatterometer, onboard the QuikSCAT satellite, infers global ocean vector winds (OVWs); however, for a number of reasons, these measurements in hurricanes are significantly degraded. This paper presents an improved hurricane OVW retrieval approach, known as Q-Winds, which is derived from combined SeaWinds active and passive measurements. In this technique, the effects of rain are implicitly included in a new geophysical model function, which relates oceanic brightness temperature and radar backscatter measurements (at the top of the atmosphere) to the surface wind vector under both clear sky and in the presence of light to moderate rain. This approach extends the useful wind speed measurement range for tropical cyclones beyond that exhibited by the standard SeaWinds Project Level-2B (L2B) 12.5-km wind vector algorithm. A description of the Q-Winds algorithm is given, and examples of OVW retrievals are presented for the Q-Winds and L2B 12.5-km algorithms for ten hurricane overpasses in 2003-2008. These data are also compared to independent surface wind vector estimates from the National Oceanic and Atmospheric Administration Hurricane Research Division's objective hurricane surface wind analysis technique known as H* Wind. These comparisons suggest that the Q-Winds OVW product agrees better with independently derived H* Wind analysis winds than does the conventional L2B OVW product.

Journal Title

Ieee Transactions on Geoscience and Remote Sensing

Volume

48

Issue/Number

7

Publication Date

1-1-2010

Document Type

Article

Language

English

First Page

2909

Last Page

2923

WOS Identifier

WOS:000281789800013

ISSN

0196-2892

Share

COinS