Title
Improving FPGA Placement with Dynamically Adaptive Stochastic Tunneling
Abbreviated Journal Title
IEEE Trans. Comput-Aided Des. Integr. Circuits Syst.
Keywords
Field-programmable gate array (FPGA); placement; simulated annealing; stochastic tunneling; POTENTIAL-ENERGY LANDSCAPES; MINIMIZATION; ARCHITECTURE; OPTIMIZATION; Computer Science, Hardware & Architecture; Computer Science, ; Interdisciplinary Applications; Engineering, Electrical & Electronic
Abstract
This paper develops a dynamically adaptive stochastic tunneling (DAST) algorithm to avoid the "freezing" problem commonly found when using simulated annealing for circuit placement on field-programmable gate arrays (FPGAs). The main objective is to reduce the placement runtime and improve the quality of final placement. We achieve this by allowing the DAST placer to tunnel energetically inaccessible regions of the potential solution space, adjusting the stochastic tunneling schedule adaptively by performing detrended fluctuation analysis, and selecting move types dynamically by a multi-modal scheme based on Gibbs sampling. A prototype annealing-based placer, called DAST, was developed as part of this paper. It targets the same computer-aided design flow as the standard versatile placement and routing (VPR) but replaces its original annealer with the DAST algorithm. Our experimental results using the benchmark suite and FPGA architecture file which comes with the Toronto VPR5 software package have shown a 18.3% reduction in runtime and a 7.2% improvement in critical-path delay over that of conventional VPR.
Journal Title
Ieee Transactions on Computer-Aided Design of Integrated Circuits and Systems
Volume
29
Issue/Number
12
Publication Date
1-1-2010
Document Type
Article
Language
English
First Page
1858
Last Page
1869
WOS Identifier
ISSN
0278-0070
Recommended Citation
"Improving FPGA Placement with Dynamically Adaptive Stochastic Tunneling" (2010). Faculty Bibliography 2010s. 446.
https://stars.library.ucf.edu/facultybib2010/446
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu