Abbreviated Journal Title
J. Acoust. Soc. Am.
Keywords
MAGNETIC-RESONANCE ELASTOGRAPHY; MR ELASTOGRAPHY; MECHANICAL-PROPERTIES; ACOUSTIC TRANSMISSION; RESPIRATORY SYSTEM; SHEAR STIFFNESS; INPUT; IMPEDANCE; CHEST; VISCOELASTICITY; PARENCHYMA; Acoustics; Audiology & Speech-Language Pathology
Abstract
A comprehensive computational simulation model of sound transmission through the porcine lung is introduced and experimentally evaluated. This "subject-specific" model utilizes parenchymal and major airway geometry derived from x-ray CT images. The lung parenchyma is modeled as a poroviscoelastic material using Biot theory. A finite element (FE) mesh of the lung that includes airway detail is created and used in COMSOL FE software to simulate the vibroacoustic response of the lung to sound input at the trachea. The FE simulation model is validated by comparing simulation results to experimental measurements using scanning laser Doppler vibrometry on the surface of an excised, preserved lung. The FE model can also be used to calculate and visualize vibroacoustic pressure and motion inside the lung and its airways caused by the acoustic input. The effect of diffuse lung fibrosis and of a local tumor on the lung acoustic response is simulated and visualized using the FE model. In the future, this type of visualization can be compared and matched with experimentally obtained elastographic images to better quantify regional lung material properties to noninvasively diagnose and stage disease and response to treatment.
Journal Title
Journal of the Acoustical Society of America
Volume
136
Issue/Number
3
Publication Date
1-1-2014
Document Type
Article
DOI Link
Language
English
First Page
1419
Last Page
1429
WOS Identifier
ISSN
0001-4966
Recommended Citation
Dai, Zoujun; Peng, Ying; Henry, Brian M.; Mansy, Hansen A.; Sandler, Richard H.; and Royston, Thomas J., "A comprehensive computational model of sound transmission through the porcine lung" (2014). Faculty Bibliography 2010s. 5219.
https://stars.library.ucf.edu/facultybib2010/5219
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu