Title
Some reductions of the spectral set conjecture to integers
Abbreviated Journal Title
Math. Proc. Camb. Philos. Soc.
Keywords
FINITE ABELIAN-GROUPS; FUGLEDES CONJECTURE; UNIVERSAL SPECTRA; FACTORIZATION; LINE; Mathematics
Abstract
The spectral set conjecture, also known as the Fuglede conjecture, asserts that every bounded spectral set is a tile and vice versa. While this conjecture remains open on R-1, there are many results in the literature that discuss the relations among various forms of the Fuglede conjecture on Z(n), Z and R-1 and also the seemingly stronger universal tiling (spectrum) conjectures on the respective groups. In this paper, we clarify the equivalences between these statements in dimension one. In addition, we show that if the Fuglede conjecture on R-1 is true, then every spectral set with rational measure must have a rational spectrum. We then investigate the Coven-Meyerowitz property for finite sets of integers, introduced in [1], and we show that if the spectral sets and the tiles in Z satisfy the Coven-Meyerowitz property, then both sides of the Fuglede conjecture on R-1 are true.
Journal Title
Mathematical Proceedings of the Cambridge Philosophical Society
Volume
156
Issue/Number
1
Publication Date
1-1-2014
Document Type
Article
Language
English
First Page
123
Last Page
135
WOS Identifier
ISSN
0305-0041
Recommended Citation
"Some reductions of the spectral set conjecture to integers" (2014). Faculty Bibliography 2010s. 5286.
https://stars.library.ucf.edu/facultybib2010/5286
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu