Title
Characterization of the Orthotropic Elastic Constants of a Micronic Woven Wire Mesh via Digital Image Correlation
Abbreviated Journal Title
Exp. Mech.
Keywords
Orthotropic constitutive modeling; Digital image correlation; Poisson's; ratio; PLAIN WEAVE FABRICS; BEHAVIOR; Materials Science, Multidisciplinary; Mechanics; Materials Science, ; Characterization & Testing
Abstract
Woven structures are steadily emerging as excellent reinforcing components in dual-phase composite materials subjected to multiaxial loads, thermal shock, and aggressive reactants in the environment. Metallic woven wire mesh materials in particular display good ductility and relatively high specific strength and specific resilience. While use of this class of materials is rapidly expanding, a significant gap in property characterization remains. This research classifies the homogenized, orthotropic material properties of a representative twill dutch woven wire mesh through the use of in-plane uniaxial tensile experiments incorporating a Digital Image Correlation (DIC) strain measurement technique. Values for elastic modulus and Poisson's ratio are calculated from the experimental data, and shear modulus values are identified by means of constitutive modeling. This approach establishes a reproducible method for characterizing the in-plane elastic response of micronic metallic woven materials via macro-scale uniaxial tensile tests, and shows that a homogenous orthotropic constitutive model may be employed to describe the macro-scale elasticity of this class of materials with reasonable accuracy.
Journal Title
Experimental Mechanics
Volume
54
Issue/Number
4
Publication Date
1-1-2014
Document Type
Article
Language
English
First Page
501
Last Page
514
WOS Identifier
ISSN
0014-4851
Recommended Citation
"Characterization of the Orthotropic Elastic Constants of a Micronic Woven Wire Mesh via Digital Image Correlation" (2014). Faculty Bibliography 2010s. 5597.
https://stars.library.ucf.edu/facultybib2010/5597
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu