Title

Image Geo-Localization Based on Multiple Nearest Neighbor Feature Matching Using Generalized Graphs

Authors

Authors

IEEE Trans. Pattern Anal. Mach. Intell.

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Macromolecules

Keywords

Geo-location; image localization; Generalized Minimum Clique Problem; (GMCP); generalized minimum spanning tree (GMST); feature matching; multiple nearest neighbor feature matching; feature correspondence; generalized graphs; Computer Science, Artificial Intelligence; Engineering, Electrical &; Electronic

Abstract

In this paper, we present a new framework for geo-locating an image utilizing a novel multiple nearest neighbor feature matching method using Generalized Minimum Clique Graphs (GMCP). First, we extract local features (e. g., SIFT) from the query image and retrieve a number of nearest neighbors for each query feature from the reference data set. Next, we apply our GMCP-based feature matching to select a single nearest neighbor for each query feature such that all matches are globally consistent. Our approach to feature matching is based on the proposition that the first nearest neighbors are not necessarily the best choices for finding correspondences in image matching. Therefore, the proposed method considers multiple reference nearest neighbors as potential matches and selects the correct ones by enforcing consistency among their global features (e.g., GIST) using GMCP. In this context, we argue that using a robust distance function for finding the similarity between the global features is essential for the cases where the query matches multiple reference images with dissimilar global features. Towards this end, we propose a robust distance function based on the Gaussian Radial Basis Function (G-RBF). We evaluated the proposed framework on a new data set of 102k street view images; the experiments show it outperforms the state of the art by 10 percent.

Subjects

A. R. Zamir;M. Shah

Volume

36

Issue/Number

8

Publication Date

1-1-2014

Document Type

Article

Language

English

First Page

1546

Last Page

1558

WOS Identifier

WOS:000340191900005

ISSN

0162-8828

Share

COinS