Title

A Dynamic-Bayesian Network framework for modeling and evaluating learning from observation

Authors

Authors

S. Ontanon; J. L. Montana;A. J. Gonzalez

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Expert Syst. Appl.

Keywords

Learning from observation; Dynamic Bayesian Networks; HUMAN-BEHAVIOR; Computer Science, Artificial Intelligence; Engineering, Electrical &; Electronic; Operations Research & Management Science

Abstract

Learning from observation (LfO), also known as learning from demonstration, studies how computers can learn to perform complex tasks by observing and thereafter imitating the performance of a human actor. Although there has been a significant amount of research in this area, there is no agreement on a unified terminology or evaluation procedure. In this paper, we present a theoretical framework based on Dynamic-Bayesian Networks (DBNs) for the quantitative modeling and evaluation of LfO tasks. Additionally, we provide evidence showing that: (1) the information captured through the observation of agent behaviors occurs as the realization of a stochastic process (and often not just as a sample of a state-to-action map); (2) learning can be simplified by introducing dynamic Bayesian models with hidden states for which the learning and model evaluation tasks can be reduced to minimization and estimation of some stochastic similarity measures such as crossed entropy. (C) 2014 Elsevier Ltd. All rights reserved.

Journal Title

Expert Systems with Applications

Volume

41

Issue/Number

11

Publication Date

1-1-2014

Document Type

Article

Language

English

First Page

5212

Last Page

5226

WOS Identifier

WOS:000336191800019

ISSN

0957-4174

Share

COinS