Title
Particle Size Effects in the Catalytic Electroreduction of CO2 on Cu Nanoparticles
Abbreviated Journal Title
J. Am. Chem. Soc.
Keywords
OXYGEN REDUCTION REACTION; SUPPORTED RU CATALYSTS; LOW-TEMPERATURE; OXIDATION; BLOCK-COPOLYMER MICELLES; ELECTROCHEMICAL REDUCTION; PLATINUM; NANOPARTICLES; CARBON-DIOXIDE; SELECTIVE METHANATION; STRUCTURE; SENSITIVITY; ELECTRONIC-PROPERTIES; Chemistry, Multidisciplinary
Abstract
A study of particle size effects during the catalytic CO2 electroreduction on size-controlled Cu nanoparticles (NPs) is presented. Cu NP catalysts in the 2-15 nm mean size range were prepared, and their catalytic activity and selectivity during CO2 electroreduction were analyzed and compared to a bulk Cu electrode. A dramatic increase in the catalytic activity and selectivity for H-2 and CO was observed with decreasing Cu particle size, in particular, for NPs below 5 nm. Hydrocarbon (methane and ethylene) selectivity was increasingly suppressed for nanoscale Cu surfaces. The size dependence of the surface atomic coordination of model spherical Cu particles was used to rationalize the experimental results. Changes in the population of low-coordinated surface sites and their stronger chemisorption were linked to surging H-2 and CO selectivities, higher catalytic activity, and smaller hydrocarbon selectivity. The presented activity-selectivity-size relations provide novel insights in the CO2 electroreduction reaction on nanoscale surfaces. Our smallest nanoparticles (similar to 2 nm) enter the ab initio computationally accessible size regime, and therefore, the results obtained lend themselves well to density functional theory (DFT) evaluation and reaction mechanism verification.
Journal Title
Journal of the American Chemical Society
Volume
136
Issue/Number
19
Publication Date
1-1-2014
Document Type
Article
DOI Link
Language
English
First Page
6978
Last Page
6986
WOS Identifier
ISSN
0002-7863
Recommended Citation
"Particle Size Effects in the Catalytic Electroreduction of CO2 on Cu Nanoparticles" (2014). Faculty Bibliography 2010s. 5993.
https://stars.library.ucf.edu/facultybib2010/5993
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu