Title
MIXED CONVECTION HEAT TRANSFER IN AN ANISOTROPIC POROUS MEDIUM WITH OBLIQUE PRINCIPAL AXES
Abbreviated Journal Title
J. Mech.
Keywords
Anisotropic porous media; Darcy viscous dissipation; Variable fluid; properties; Second order finite difference method; LATERAL MASS FLUX; NATURAL-CONVECTION; VERTICAL CHANNEL; VISCOUS; DISSIPATION; VARIABLE VISCOSITY; FORCED-CONVECTION; OPPOSING BUOYANCY; BOUNDARY-LAYERS; FLOW; PERMEABILITY; Mechanics
Abstract
In this paper, a numerical study is carried out to investigate the mixed convection flow and heat transfer in a parallel-plate channel with an anisotropic permeable porous medium. The principal axis of the porous medium is orientated in a direction which is oblique to the gravity vector. Both clear (Newtonian) fluid dissipation and Darcy viscous dissipation are considered in the heat transport equation. In this model, the temperature dependent fluid properties are considered and their influence on the flow and heat transfer characteristics is brought out. The governing non-linear equations (in non-dimensional form) are solved numerically by a second order finite difference scheme. The directional permeability ratio A(1) is defined to combine the effects of the permeability ratio parameter K-* = (K-1/K-2) and the orientation angle Phi(1). The effects of the anisotropic permeability ratio, the orientation angle of the principal axis, and the temperature dependent variable properties on the mixed convection flow and heat transfer are investigated. It is demonstrated that both the anisotropic permeability of the porous medium and the variable transport properties have strong effects on the flow and heat transfer characteristics.
Journal Title
Journal of Mechanics
Volume
30
Issue/Number
4
Publication Date
1-1-2014
Document Type
Article
Language
English
First Page
327
Last Page
338
WOS Identifier
ISSN
1727-7191
Recommended Citation
"MIXED CONVECTION HEAT TRANSFER IN AN ANISOTROPIC POROUS MEDIUM WITH OBLIQUE PRINCIPAL AXES" (2014). Faculty Bibliography 2010s. 6204.
https://stars.library.ucf.edu/facultybib2010/6204
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu