Title
Experimental and computational studies of sound transmission in a branching airway network embedded in a compliant viscoelastic medium
Abbreviated Journal Title
J. Sound Vibr.
Keywords
MAGNETIC-RESONANCE ELASTOGRAPHY; LONGITUDINAL-WAVE PROPAGATION; MECHANICAL-PROPERTIES; RESPIRATORY SYSTEM; SHEAR STIFFNESS; MR; ELASTOGRAPHY; BREATH SOUNDS; LUNG SOUNDS; CHEST; MODEL; Acoustics; Engineering, Mechanical; Mechanics
Abstract
Breath sounds are often used to aid in the diagnosis of pulmonary disease. Mechanical and numerical models could be used to enhance our understanding of relevant sound transmission phenomena. Sound transmission in an airway mimicking phantom was investigated using a mechanical model with a branching airway network embedded in a compliant viscoelastic medium. The Horsfield self-consistent model for the bronchial tree was adopted to topologically couple the individual airway segments into the branching airway network The acoustics of the bifurcating airway segments were measured by microphones and calculated analytically. Airway phantom surface motion was measured using scanning laser Doppler vibrometry. Finite element simulations of sound transmission in the airway phantom were performed. Good agreement was achieved between experiments and simulations. The validated computational approach can provide insight into sound transmission simulations in real lungs. (C) 2014 Elsevier Ltd. All rights reserved.
Journal Title
Journal of Sound and Vibration
Volume
339
Publication Date
1-1-2015
Document Type
Article
Language
English
First Page
215
Last Page
229
WOS Identifier
ISSN
0022-460X
Recommended Citation
"Experimental and computational studies of sound transmission in a branching airway network embedded in a compliant viscoelastic medium" (2015). Faculty Bibliography 2010s. 6486.
https://stars.library.ucf.edu/facultybib2010/6486
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu