Title

Experimental Study of Anisotropic Stress/Strain Relationships of the Piglet Great Vessels and Relevance to Pediatric Congenital Heart Disease

Authors

Authors

Y. Q. Jia; I. R. Argueta-Morales; M. Liu; Y. L. Bai; E. Divo; A. J. Kassab;W. M. DeCampli

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Ann. Thorac. Surg.

Keywords

COMPUTATIONAL FLUID-DYNAMICS; AORTIC-ARCH; ARTERIAL-WALL; BLOOD-FLOW; PULMONARY; COLLAGEN; MODELS; Cardiac & Cardiovascular Systems; Respiratory System; Surgery

Abstract

Background. Determining material mechanical properties of neonatal aorta and pulmonary artery will aid understanding tissue behavior when subjected to abnormal hemodynamics of congenital heart disease. Methods. Aorta and pulmonary arteries were harvested from 6 neonatal piglets (mean weight 3.5 kg). Tissue samples from ventral and dorsal aspects of ascending aorta (AA) and descending aorta (DA), innominate artery (IA), left subclavian artery (LScA), main pulmonary artery (MPA), and left pulmonary artery (LPA) and right pulmonary artery (RPA) were obtained in three orientations: circumferential, diagonal, and longitudinal. Samples were subjected to uniaxial tensile testing. True strain-Cauchy stress curves were individually fitted for each orientation to calibrate the Fung model, and to measure tissue stiffness (10% strain). Results. All samples, for all orientations, demonstrated nonlinear hyperelastic strain-stress response to uniaxial tensile testing (Holzapfel-Gasser and fitted-Fung models R-2 > 0.95). For each vessel segment, stiffness was not significantly different among orientations. Stiffness values in all orientations, including ventral/dorsal samples, were compared between AA > MPA (p = 0.08), DA > MPA (p < 0.01), and DA > AA (p = 0.35). Comparison of circumferential orientation samples showed AA and DA are significantly stiffer than MPA (p < 0.05), and MPA stiffness was similar to that of the RPA but slightly greater than LPA. Also, dorsal circumferential samples of all segments were slightly stiffer than ventral (p = 0.21). Dorsal aspect of AA was slightly stiffer in all orientations (p = 0.248). Conclusions. The neonatal aorta and pulmonary artery exhibit hyperelastic biomechanical behavior with an anisotropic effect. Differences between aorta and pulmonary artery may play a role in native tissue behavior, ventricular and arterial mechanical coupling, and risk of deformation due to abnormal hemodynamics of congenital heard disease. (C) 2015 by The Society of Thoracic Surgeons

Journal Title

Annals of Thoracic Surgery

Volume

99

Issue/Number

4

Publication Date

1-1-2015

Document Type

Article

Language

English

First Page

1399

Last Page

1407

WOS Identifier

WOS:000352162100052

ISSN

0003-4975

Share

COinS