Abbreviated Journal Title
RSC Adv.
Keywords
SELF-ASSEMBLING PEPTIDES; ABA BLOCK-COPOLYMERS; AQUEOUS-SOLUTION; TRIBLOCK COPOLYMER; AGGREGATION BEHAVIOR; DRUG-DELIVERY; IONIC; SURFACTANTS; MICELLE FORMATION; LIGHT-SCATTERING; GENE DELIVERY; Chemistry, Multidisciplinary
Abstract
Self-assembling complex systems exhibit properties that involve a broad spectrum of thermal, structural, morphological, and optical transitions. Various techniques have been used to assess different aspects of the phase transitions in these complex systems. However, because of inherent technical constraints, structural information is usually provided only within narrow ranges of concentrations and temperatures. We show here that by effectively suppressing multiple scattering, low-coherence dynamic light scattering permits assessing the aggregation dynamics of self-assembling systems in a completely passive manner and over ranges of concentration and temperatures well beyond the limits of traditional approaches. The power spectral analysis of scattered intensity fluctuations permits a reliable characterization of multiple relaxation times. We demonstrate that the entire phase diagram can be covered in a consistent way and structural phase transitions can be mapped over a broad optical regime from weak to strong scattering.
Journal Title
Rsc Advances
Volume
5
Issue/Number
7
Publication Date
1-1-2015
Document Type
Article
DOI Link
Language
English
First Page
5357
Last Page
5362
WOS Identifier
ISSN
2046-2069
Recommended Citation
Guzman-Sepulveda, Jose R.; Douglass, Kyle M.; Amin, Samiul; Lewis, Neil E.; and Dogariu, Aristide, "Passive optical mapping of structural evolution in complex fluids" (2015). Faculty Bibliography 2010s. 6557.
https://stars.library.ucf.edu/facultybib2010/6557
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu