Title
Discrete Anderson speckle
Abbreviated Journal Title
Optica
Keywords
SCATTERING LAYERS; LOCALIZATION; LIGHT; DIFFRACTION; TRANSPORT; DISORDER; LATTICES; PHOTONS; SYSTEMS; CORNERS; Optics
Abstract
When a disordered array of coupled waveguides is illuminated with an extended coherent optical field, discrete speckle develops: partially coherent light with a granular intensity distribution on the lattice sites. The same paradigm applies to a variety of other settings in photonics, such as imperfectly coupled resonators or fibers with randomly coupled cores. Through numerical simulations and analytical modeling, we uncover a set of surprising features that characterize discrete speckle in one-and two-dimensional lattices known to exhibit transverse Anderson localization. First, the fingerprint of localization is embedded in the fluctuations of the discrete speckle and is revealed in the narrowing of the spatial coherence function. Second, the transverse coherence length (or speckle grain size) is frozen during propagation. Third, the axial coherence depth is independent of the axial position, thereby resulting in a coherence voxel of fixed volume independently of position. We take these unique features collectively to define a distinct regime that we call discrete Anderson speckle. (C) 2015 Optical Society of America
Journal Title
Optica
Volume
2
Issue/Number
3
Publication Date
1-1-2015
Document Type
Article
Language
English
First Page
201
Last Page
209
WOS Identifier
ISSN
2334-2536
Recommended Citation
"Discrete Anderson speckle" (2015). Faculty Bibliography 2010s. 6634.
https://stars.library.ucf.edu/facultybib2010/6634
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu