Title

Waddling and Toddling: The Biomechanical Effects of an Immature Gait

Authors

Authors

L. W. Cowgill; A. Warrener; H. Pontzer;C. Ocobock

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Am. J. Phys. Anthropol.

Keywords

femur; ground reaction force; shape; walking; FEMORAL BICONDYLAR ANGLE; LATER STONE-AGE; LOWER-LIMB; ALLIGATOR-MISSISSIPPIENSIS; POSTCRANIAL ROBUSTICITY; BILATERAL; ASYMMETRY; BODY PROPORTIONS; IGUANA-IGUANA; BONE; WALKING; Anthropology; Evolutionary Biology

Abstract

Femoral shape changes during the course of human growth, transitioning from a subcircular tube to a teardrop-shaped diaphysis with a posterior pilaster. Differences between immature and mature bipedalism and body shape may generate different loads, which, in turn, may influence femoral modeling and remodeling during the course of the human lifespan. This study uses two different approaches to evaluate the hypotheses that differences in gait between young and mature walkers result in differences in ground reaction forces (GRFs) and that the differences in loading regimes between young children and adults will be reflected in the geometric structure of the midshaft femur. The results of this analysis indicate that GRFs differ between young walkers and adults in that normalized mediolateral (ML) forces are significantly higher in younger age groups. In addition, these differences between children and adults in the relative level of ML bending force are reflected in changes in femoral geometry during growth. During the earlier stages of human development, immature femoral diaphyses are heavily reinforced in approximately ML plane. The differences in gait between mature and immature walkers, and hence the differences in femoral shape, are likely partially a product of a minimal bicondylar angle and relatively broad body in young children. Am J Phys Anthropol 143:52-61, 2010. (C) 2010 Wiley-Liss, Inc.

Journal Title

American Journal of Physical Anthropology

Volume

143

Issue/Number

1

Publication Date

1-1-2010

Document Type

Article

Language

English

First Page

52

Last Page

61

WOS Identifier

WOS:000281309500006

ISSN

0002-9483

Share

COinS