Title
Water vapor and carbon dioxide species measurements in narrow channels
Abbreviated Journal Title
Int. J. Heat Mass Transf.
Keywords
TDLAS; Narrow channels; Laser diagnostics; Species concentration; PEM FUEL-CELL; IN-SITU; DIODE-LASER; PARTIAL-PRESSURE; ABSORPTION-SPECTROSCOPY; WAVELENGTH MODULATION; TEMPERATURE; SYSTEMS; MICROCHANNELS; TECHNOLOGY; Thermodynamics; Engineering, Mechanical; Mechanics
Abstract
Classical spectroscopic techniques have been applied in a novel manner to measure the concentration of gas species, water vapor and carbon dioxide, within a narrow channel flow field non-invasively. Tunable diode laser absorption spectroscopy (TDLAS) was used in conjunction with a laser modulated at a high frequency [Wavelength Modulation Spectroscopy (WMS)] tuned to the ro-vibrational transition of the species. This technique measures the absorption profile which is a strong function of the species concentration across short path lengths and small time spans, as in PEM fuel cells during high load cycles. This method has been verified in a transparent circular flow 12 cm path length and a 12 mm rectangular flow channel. Distinct absorption peaks for water vapor and carbon dioxide have been identified, and concentrations of water vapor and carbon dioxide within the test cells have been measured in situ with high temporal resolutions. A comparison of the full-width at half-maximum (FWHM) of the absorption line-shapes to the partial pressure of water vapor and carbon dioxide showed strong relationships, except in the lower partial pressure regions. Test section temperature was observed to have very minimal impact on these curves at low partial pressure values. A porous media like a membrane electrode assembly (MEA) similar to those used in PEM fuel cells sandwiched between two rectangular flow channels was also tested. Some of the scattered radiation off the MEA was observed using a photodiode at high gain, allowing for more localized species detection. The technique was used to monitor the humidity on either side of the MEA during both temperature controlled and super-saturated conditions. The measurements were observed to be repeatable to within 10%. (C) 2009 Elsevier Ltd. All rights reserved.
Journal Title
International Journal of Heat and Mass Transfer
Volume
53
Issue/Number
4
Publication Date
1-1-2010
Document Type
Article
Language
English
First Page
703
Last Page
714
WOS Identifier
ISSN
0017-9310
Recommended Citation
"Water vapor and carbon dioxide species measurements in narrow channels" (2010). Faculty Bibliography 2010s. 6980.
https://stars.library.ucf.edu/facultybib2010/6980
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu