Abstract

Topological insulators (TIs) are a class of quantum materials, which behave as insulators in the bulk, yet possess gapless spin-polarized surface states, which are robust against nonmagnetic impurities. The unique properties of TIs make them attractive not only for studying various fundamental phenomena in condensed matter and particle physics, but also as promising candidates for applications ranging from spintronics to quantum computation. Within the topological insulator realm, a great deal of focus has been placed on discovering new quantum materials, however, ideal multi-modal quantum materials have yet to be found. Here we study alpha-PdBi2, KFe2Te2, and DySb compounds including others within these families with high-resolution angle-resolved photoemission spectroscopy (ARPES) complimented by first principles calculations. We observe unique phase changes and phenomena across their transition temperatures. Our work paves a new direction in material discovery and application related to their unique electronic properties.

Thesis Completion

2021

Semester

Summer

Thesis Chair

Neupane, Madhab

Degree

Bachelor of Science (B.S.)

College

College of Sciences

Department

Physics

Language

English

Access Status

Open Access

Release Date

8-1-2021

Share

COinS