Abstract

Hematological cancers account for nearly ten percent of cancer cases diagnosed annually in the United States. Patients who fail to respond to chemotherapy or radiotherapy must often undergo a bone marrow transplant to treat their malignancy. A significant complication following this procedure is Graft versus Host Disease (GvHD), which occurs when donor T cells mount an immune response against recipient tissues. Immunological research has highlighted the role of aberrant T cell metabolism, specifically a shift toward aerobic glycolysis, as a key driver behind the occurrence of this condition. The transcription factor FoxK1 has been revealed to be a key regulator of the cell's ability to induce aerobic glycolysis. Utilizing established GvHD murine models and novel CRISPR-Cas9 techniques, this study investigates how controlling this important pathway by FoxK1 may limit the damage inflicted by GvHD. Our studies reveal that depleting FoxK1 in donor T cells has a protective effect following transplants by promoting an immunosuppressive phenotype in donor T cells. These results suggest that FoxK1 may hold promise as a future cellular target for cellular therapies administered to transplant patients to prevent the occurrence of GvHD. Continued research is needed to ascertain the precise mechanisms that afford FoxK1 this protective role.

Thesis Completion

2021

Semester

Fall

Thesis Chair

Nguyen, Hung

Degree

Bachelor of Science (B.S.)

College

College of Medicine

Department

Burnett School of Biomedical Sciences

Degree Program

Biomedical Sciences

Language

English

Access Status

Campus Access

Length of Campus-only Access

1 year

Release Date

12-1-2022

Share

COinS