Abstract

What role do high and low wall shear stresses play in the deterioration of arteriole and capillary walls? Plaque buildup is common around bifurcations in arterioles, indicating that low wall shear stress may play a role in the weakening of the walls. This thesis investigates the creation of blood analog fluid used in a Polydimethylsiloxane (PDMS) curved channel to explore the fluid properties and characteristics near bifurcations. Major results in the experiments showed the viscosity and surface tension trends of a blood analog fluid composed of xanthan gum, glycerin, and distilled water with the addition of Silver Coated Hollow Glass Spheres in varying volume fractions. All experiments were conducted at room temperature with varying flow rates between 0.1-2 µL/second. The velocity profile was characterized at each flow rate. Important results that will be discussed will include the variation of flow near bifurcations and at different flow rates and RBC concentration. Full parabolic velocity profiles formed in the straight region of the channels as expected. After the bifurcation, the velocity profile was skewed to the outer wall. At lower flow rates there were fewer particles flowing near the wall of the channel.

Thesis Completion

2022

Semester

Spring

Thesis Chair

Bhattacharya, Samik

Degree

Bachelor of Science in Mechanical Engineering (B.S.M.E.)

College

College of Engineering and Computer Science

Department

Mechanical and Aerospace Engineering

Degree Program

Mechanical Engineering

Language

English

Access Status

Campus Access

Length of Campus-only Access

3 years

Release Date

5-1-2025

Restricted to the UCF community until 5-1-2025; it will then be open access.

Share

COinS