Influenza is one of the most common diseases worldwide, yet the vaccines against influenza are only 35% effective at protecting against infection. Creating a more effective vaccine requires an understanding of the foundation and the factors that contribute to a strong and protective adaptive immune response. T-bet [TBX21] is a transcription factor that plays an instrumental role in the orchestration of the type 1 immune response, which is the specialized response used by the immune system for a cell-mediated response against intracellular pathogens, such as influenza. It has yet to be explored in an influenza setting on the role T-bet in the production of antibodies. The aim of this study is to understand T-bet's role in production of antibody isotypes and identify whether expression of T-bet is more important for antibody production in T cells or B cells. We expected T-bet knockout (KO) mice to have IgG2a and that T-bet expression would be more important in T cells for antibody production. An enzyme-linked immunosorbent assay (ELISA) was used to measure the amount of virus-specific antibody in T-bet KO versus wild type (WT) mice infected with influenza. The results show that the T-bet KO and WT mice have relatively the same amount of IgG and IgG1, but the T-bet KO have a significantly lower level of IgG2a, confirming T-bet's importance for its production. To distinguish the importance of T-bet expression while T-bet expression in T cells was constant, a model was developed to allow us to control expression of T-bet in B cells. The results however were inconclusive, and the experiment will have to be repeated to make a firm conclusion on the roles of lymphocytes in the control of IgG isotypes. Overall, these results indicate that the manipulation of T-bet expression can be used as a vector to control IgG antibody levels, which holds potential for the improvement of vaccines.

Thesis Completion




Thesis Chair

McKinstry, Kai


Bachelor of Science (B.S.)


College of Medicine

Degree Program

Biomedical Sciences



Access Status

Open Access

Length of Campus-only Access

1 year

Release Date