Abstract

As the world continues to experience substantial rates of habitat loss, habitat restoration has become of prime interest to ecologists worldwide. Restoration has shown to be successful in recovering targeted components of certain ecosystems but it is important to achieve a holistic understanding of the resulting ecological impacts it has on communities. To address this, four oyster reefs and three living shorelines were restored during the summer of 2017. These sites, along with four dead oyster reefs, four living oyster reefs, and three undisturbed (control) living shorelines, were sampled before restoration and regularly post-restoration for one year using lift nets. Macroinvertebrates were collected and enumerated in the lab. Diversity indices, community composition, and similarity percentages were then calculated and compared across treatments, time, and treatment-by-time. Live reefs displayed significantly higher species richness and Shannon diversity than restored and dead reefs. Simpson diversity did not differ between live and restored oyster reefs but both were significantly higher than dead reefs. Though not statistically detectable, species richness and Shannon diversity on restored reefs were relatively similar to dead reefs before restoration but became increasingly similar to live reefs over the course of the study. Additionally, analyses revealed significantly different community compositions between live reefs and restored reefs, as well as between live and dead reefs. Living shorelines showed no significant differences in diversity indices but did experience similar seasonal fluctuations in diversity across treatments. Just as with oyster reefs, restored and control living shorelines harbored significantly different communities across time. The findings of this study emphasize the need for dedication to thorough monitoring and multi-metric evaluation of success in restoration efforts. This study and future research will equip resource managers with ways to quantify the effects of restoration that will consider several important ecosystem components.

Thesis Completion

2019

Semester

Spring

Thesis Chair

Cook, Geoffrey

Degree

Bachelor of Science (B.S.)

College

College of Sciences

Department

Biology

Degree Program

Biology

Language

English

Access Status

Open Access

Release Date

5-1-2019

Included in

Biology Commons

Share

COinS