Abstract

Nucleic acid sequence based amplification (NASBA) is a primer based isothermal method of RNA/DNA amplification. Currently, primer design for NASBA has been restricted to hand creating sequences of oligonucleotides that must follow a set of rules to be compatible for the amplification process. This process of hand-creating primers is prone to error and time intensive. The detection of mutants, post amplification, also offers a benefit in point of care scenarios and the design of hybridization probes for sequences in the region of amplification is also an erroneous and time intensive process. By creating a program to design primers and hybridization probes based on the set of rules provided for a sequence of user input DNA or RNA, one can avoid costly errors in primers design and save time. Utilizing Python (a high-level object-oriented programming language), along with a series of bioinformatic libraries such as Biopython and UNAfold one can definitively choose the best primer sequences for a given sample of DNA.

Thesis Completion

2020

Semester

Spring

Thesis Chair

Gerasimova, Yulia

Degree

Bachelor of Science (B.S.)

College

College of Sciences

Department

Chemistry

Degree Program

Biochemistry

Language

English

Access Status

Open Access

Release Date

5-1-2020

Share

COinS