During the DARPA SCENICC program, J. Ford, et al., demonstrated that CFBs provide a compelling route to compact, wide angle imagers. Monocentric lenses readily provide diffraction-limited images over wide field but onto a hemispherically curved image surface. They demonstrated visible CFBs can be tapered, cut and polished to relay curved images to flat sensors. We have shown that this provides a volumetric imaging efficiency a hundredfold larger than bulk optics can produce; a hundred times the resolution in the same volume or a hundred times less volume for the same resolution. Ford’s work leveraged commercial fiber bundles available for the visible spectrum based on silica. We have developed hybrid fiber bundles using step-index confinement between chalcogenide glass cores and polymer cladding with high index-contrast. The high contrast is necessary to provide tight confinement to the high-index As-Se core with minimal crosstalk between closely spaced cores. Tight confinement also minimizes absorption losses in the PEI polymer cladding. The high contrast of this system also provides a large NA to optimize coupling into the CFB from fast lenses. We introduce disorder into the core radius as a mechanism to further decouple adjacent cores, reduce crosstalk and increase fill-factor. We present coupled-mode theory, modal crosstalk superposition, and finite-element modelling to quantify coupling losses and crosstalk as a function of geometry and disorder. We fabricated preforms, drew small fiber bundles and characterized optical properties of the bundles to aid scale-up to megapixel MWIR CFBs.

Thesis Completion




Thesis Chair

Renshaw, C. Kyle


Bachelor of Science in Photonic Science and Engineering (B.S.P.S.E.)


College of Optics and Photonics



Access Status

Open Access

Release Date


Included in

Optics Commons