The world has never been more connected than it is today. While this is true for people, it is also true for Earth's flora and fauna. Unfortunately, this connectedness has contributed to unprecedented invasive species introductions around the world. Most introductions result in an introduced species dying out in the newly invaded territory and never becoming established. Other introduced species establish and persist for years, but never have a noticeable effect on local ecosystems. However, occasionally, an invasive species gets introduced to a new area and has negative impacts on native plant and animal life. The Indo-Pacific swimming crab, Charybdis hellerii, was introduced to the southern Indian River Lagoon (IRL) in the 1990s. Recently, it has been reported to be expanding its non-native range northward up the IRL and into more northerly east coast states. To better understand the ecological role C. hellerii fills in the lagoon and the threat it poses to the economically important and native Callinectes sapidus, this study utilized stable isotope analysis to assess dietary overlap and competition between these species. The results of this study indicate significant overlap in dietary resource usage suggesting C. hellerii is likely feeding on some of the same prey items and competing with native C. sapidus. Based on the increasing numbers of C. hellerii and their reported range expansion, they appear to be establishing populations in the U.S. and will continue to compete with C. sapidus. This could negatively impact C. sapidus populations in the IRL, which is bad for the crab, bad for the fishery, and bad for the lagoon. Further, competition in the IRL is concerning for the rest of the southeastern U.S. states that appear to be in the early stages of a C. hellerii invasion. The findings of this study illuminate the need for further research into the ecological niche C. hellerii is filling in the IRL and the interactions it is having with, as well as the effects it is having on, native species in the lagoon. This study and future research will allow fisheries managers to devise more effective strategies to limit the spread of C. hellerii and minimize the harm it can do in non-native environments.

Thesis Completion




Thesis Chair/Advisor

Cook, Geoffrey


Bachelor of Science (B.S.)


College of Sciences





Access Status

Open Access

Release Date


Included in

Biology Commons