Abstract

Antigen expression through the Chloroplast Transformation Technology (CTT) produces bioencapsulated subunit-vaccines, capable of eliciting immune responses when delivered orally. Considerable challenges to effective plant-based vaccines are the normalization of dosage and preservation of accumulated antigen, which is complicated by variable high water content and protease activity. This study critically examines the efficacy of lyophilization in dehydrating plant-tissues and preserving plant-derived antigens with vaccine potential. Lyophilization was optimized through gravimetric analysis using lettuce expressing Protective Antigen (PA) of Bacillus anthracis (LS-HPAG) and the human autoantigen Proinsulin (Pins) fused to Cholera toxin subunit B (LS-CTB-Pins). Lyophilization for 48-hours was sufficient treatment to reduce lettuce to 4.57% of its original weight, which retained .058% water content in the bound state; these levels corresponded with oven-dried controls while antigen was stabilized for over a year of storage at room temperature. A simulated gastric fluid assay was applied to evaluate stability of plant derived antigens during digestion. It was observed that lettuce plant cells conferred protection through antigen bioencapsulation for up to an hour under enzymatic digestive conditions. LS-HPAG immunogenicity was then demonstrated through the induction of a PA-specific IgG response by through oral boosting of C57/BL6 test mice. Survival during toxin challenge demonstrated a protective immune response if 40% of animal immunized by plant-derived PA. Lastly, the inclusion of excipient and adjuvant additives will be considered and utilized for the development of prototype vaccine capsule formulations.

Notes

If this is your Honors thesis, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Thesis Completion

2011

Semester

Spring

Advisor

Daniell, Henry

Degree

Bachelor of Science (B.S.)

College

College of Medicine

Degree Program

Molecular Biology and Microbiology

Subjects

Dissertations, Academic -- Medicine;Medicine -- Dissertations, Academic

Format

PDF

Identifier

CFH0003861

Language

English

Access Status

Open Access

Length of Campus-only Access

None

Document Type

Honors in the Major Thesis

Share

COinS