Abstract

Ventricle Assist Devices (VADs), which are typically either axial or centrifugal flow pumps implanted on the aortic arch, have been used to support patients who are awaiting cardiac transplantation. Success of the apparatus in the short term has led to long term use. Despite anticoagulation measures, blood clots (thrombi) have been known to form in the device itself or inside of the heart. The Ventricle Assist Devices supply blood flow via a conduit (cannula) implanted on the ascending aorta. Currently, the implantation angle of the VAD cannula is not taken into consideration. Since the VADs supply a significant amount of blood flow to the aorta, the implantation angle can greatly affect the trajectory of the formed thrombi as well as the cardiac flow field inside of the aortic arch. This study aims to vary the implantation angle of a pediatric Left Ventricle Assist Device (LVAD) through a series of computational fluid dynamics (CFD) software simulations focusing on the aortic arch and its branching arteries of a 20 kg pediatric patient in order to reduce the occurrence of stroke.

Notes

If this is your Honors thesis, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Thesis Completion

2012

Semester

Fall

Advisor

Kassab, Alain

Degree

Bachelor of Science in Mechanical Engineering (B.S.M.E.)

College

College of Engineering and Computer Science

Degree Program

Mechanical Engineering

Subjects

Dissertations, Academic -- Engineering and Computer Science;Engineering and Computer Science -- Dissertations, Academic

Format

PDF

Identifier

CFH0004305

Language

English

Access Status

Open Access

Length of Campus-only Access

None

Document Type

Honors in the Major Thesis

Share

COinS