Abstract
Ventricle Assist Devices (VADs), which are typically either axial or centrifugal flow pumps implanted on the aortic arch, have been used to support patients who are awaiting cardiac transplantation. Success of the apparatus in the short term has led to long term use. Despite anticoagulation measures, blood clots (thrombi) have been known to form in the device itself or inside of the heart. The Ventricle Assist Devices supply blood flow via a conduit (cannula) implanted on the ascending aorta. Currently, the implantation angle of the VAD cannula is not taken into consideration. Since the VADs supply a significant amount of blood flow to the aorta, the implantation angle can greatly affect the trajectory of the formed thrombi as well as the cardiac flow field inside of the aortic arch. This study aims to vary the implantation angle of a pediatric Left Ventricle Assist Device (LVAD) through a series of computational fluid dynamics (CFD) software simulations focusing on the aortic arch and its branching arteries of a 20 kg pediatric patient in order to reduce the occurrence of stroke.
Notes
If this is your Honors thesis, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Thesis Completion
2012
Semester
Fall
Advisor
Kassab, Alain
Degree
Bachelor of Science in Mechanical Engineering (B.S.M.E.)
College
College of Engineering and Computer Science
Degree Program
Mechanical Engineering
Subjects
Dissertations, Academic -- Engineering and Computer Science;Engineering and Computer Science -- Dissertations, Academic
Format
Identifier
CFH0004305
Language
English
Access Status
Open Access
Length of Campus-only Access
None
Document Type
Honors in the Major Thesis
Recommended Citation
Guimond, Stephen, "Computational fluid dynamics investigation of the orientation of a pediatric left ventricle assist device cannula to reduce stroke events" (2012). HIM 1990-2015. 1356.
https://stars.library.ucf.edu/honorstheses1990-2015/1356