Abstract
Experimental and numerical investigations of water microdroplet evaporation on heated, laser patterned polymer substrates are reported. The study is focused on both (1) validating numerical models with experimental data, (2) identifying how changes in the contact line infuences evaporative heat transfer and (3) determining methods of controlling contact line dynamics during evaporation. Droplets are formed using a bottom-up methodology, where a computer-controlled syringe pump supplies water to a ~200[micro]m in diameter fluid channel within the heated substrate. This methodology facilitates precise control of the droplets growth rate, size, and inlet temperature. In addition to this microchannel supply line, the substrate surfaces are laser patterned with a moat-like trench around the fluid-channel outlet, adding additional control of the droplets contact line motion, area, and contact angle. In comparison to evaporation on non-patterned substrate surfaces, this method increases the contact line pinning time by ~60% of the droplets lifetime. The evaporation rates are compared to the predictions of a commonly reported model based on a solution of the Laplace equation, providing the local evaporation flux along the droplets liquid-vapor interface. The model consistently overpredicts the evaporation rate, which is presumable due to the models constant saturated vapor concentration along the droplets liquid-vapor interface. In result, a modified version of the model is implemented to account for variations in temperature along the liquid-vapor interface. A vapor concentration distribution is then imposed using this temperature distribution, increasing the accuracy of predicting the evaporation rate by ~7:7% and ~9:9% for heated polymer substrates at T[sub]s = 50[degrees]C‰ and 65‰[degrees]C, respectively.
Notes
If this is your Honors thesis, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Thesis Completion
2014
Semester
Spring
Advisor
Putnam, Shawn A.
Degree
Bachelor of Science in Aerospace Engineering (B.S.A.E.)
College
College of Engineering and Computer Science
Department
Mechanical and Aerospace Engineering
Degree Program
Aerospace Engineering
Subjects
Dissertations, Academic -- Engineering and Computer Science; Engineering and Computer Science -- Dissertations, Academic
Format
Identifier
CFH0004566
Language
English
Access Status
Open Access
Length of Campus-only Access
None
Document Type
Honors in the Major Thesis
Recommended Citation
Gleason, Kevin, "Experimental and Numerical Investigations of Microdroplet Evaporation with a Forced Pinned Contact Line" (2014). HIM 1990-2015. 1569.
https://stars.library.ucf.edu/honorstheses1990-2015/1569