Abstract

This thesis describes how to evaluate a first-order approximation of the vibration induced on a beam that is vertically curved and experiences a moving load of non-constant velocity. The curved beam is applicable in the example of a roller coaster. The present research in the field does not consider a curved beam nor can similar research be applied to such a beam. The complexity of the vibration of a curved beam lies primarily in the description of the variable magnitude of the moving load applied. Furthermore, this motion is also variable. This thesis will present how this beam will displace in response to the moving load. The model presented can be easily manipulated as it considers most variables to be functions of time or space. The model will be compared to existing research on linear beams to ensure the unique response of a curved beam.

Notes

If this is your Honors thesis, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Thesis Completion

2015

Semester

Spring

Advisor

Kauffman, Jeffrey L.

Degree

Bachelor of Science in Mechanical Engineering (B.S.M.E.)

College

College of Engineering and Computer Science

Department

Mechanical and Aerospace Engineering

Degree Program

Mechanical Engineering

Subjects

Dissertations, Academic -- Engineering and Computer Science; Engineering and Computer Science -- Dissertations, Academic

Format

PDF

Identifier

CFH0004739

Language

English

Access Status

Open Access

Length of Campus-only Access

None

Document Type

Honors in the Major Thesis

Share

COinS