Abstract

Quantifying the core mechanics of putting is imperative to developing a reliable model that predicts post-collision ball behavior. A preliminary model for the stroking motion of putting and putter-ball collision is developed alongside experiments, establishing an empirical model that supports the theory. The goal of the present study is to develop a correlation between the backstroke of a putt, or the pre-impact translation of the putter, and the post-impact displacement of the golf ball. This correlation is subsequently utilized to generate an algorithm that predicts the two-dimensional ball trajectory based on putt displacement and putting surface texture by means of finite element analysis. In generating a model that accurately describes the putting behavior, the principles of classical mechanics were utilized. As a result, the putt displacement was completely described as a function of backstroke and some environmental parameters, such as: friction, slope of the green, and the elasticity of the putter-ball collision. In support of the preliminary model, experimental data were gathered from golfers of all levels. The collected data demonstrated a linear correlation between backstroke and putt distance, with the environmental parameters factoring in as a constant value; moreover, the data showed that experienced golfers tend to have a constant acceleration through ball impact. Combining the empirical results with the trajectory prediction algorithm will deliver an accurate predictor of ball behavior that can be easily implemented by golfers under most practical applications. Putt distance to backstroke ratios were developed under a variety of conditions.

Notes

If this is your Honors thesis, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Thesis Completion

2015

Semester

Spring

Advisor

Gordon, Ali P.

Degree

Bachelor of Science in Mechanical Engineering (B.S.M.E.)

College

College of Engineering and Computer Science

Department

Mechanical and Aerospace Engineering

Degree Program

Mechanical Engineering

Subjects

Dissertations, Academic -- Engineering and Computer Science; Engineering and Computer Science -- Dissertations, Academic

Format

PDF

Identifier

CFH0004764

Language

English

Access Status

Open Access

Length of Campus-only Access

None

Document Type

Honors in the Major Thesis

Share

COinS