Abstract

Previous studies performed on Chlamydia trachomatis have demonstrated how these obligate intracellular microbes invade host cells through the utilization of secreted effector proteins. One secreted effector called Tarp (translocated actin recruiting protein) is implicated in cytoskeleton rearrangements that promote bacterial entry into the host cell. The focus of our study is to create a plasmid that carries the tarP gene that when transcribed and translated from within Chlamydia trachomatis will generate a c-Myc epitope tagged Tarp. The tag will be used in future studies to track the progression of the protein through the infectious process and will allow us to distinguish this protein from the Tarp effector expressed from the endogenous wild type gene. The epitope-tagged Tarp expression plasmid will be used as a template to construct Tarp deletion mutants. The mutant forms will be created in regions that have been biochemically characterized and predicted to be important to the invasion process of the pathogen. Observations on the potential phenotypes of these mutants and the possibility of allelic exchange will also be pursued in the future.

Notes

If this is your Honors thesis, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Thesis Completion

2013

Semester

Spring

Advisor

Jewett, Travis

Degree

Bachelor of Science (B.S.)

College

Burnett School of Biomedical Sciences

Degree Program

Molecular Biology and Microbiology

Subjects

Dissertations, Academic -- Medicine;Medicine -- Dissertations, Academic

Format

PDF

Identifier

CFH0004385

Language

English

Access Status

Open Access

Length of Campus-only Access

5 years

Document Type

Honors in the Major Thesis

Share

COinS