Abstract

Cholera, caused by the secretion of cholera toxin (CT) by Vibrio cholerae within the intestinal lumen, triggers massive secretory diarrhea which may lead to life-threatening dehydration. CT is an AB5-type protein toxin that is comprised of an enzymatically active A1 chain, an A2 linker, and a cell-binding B pentamer. Once secreted, the CT holotoxin moves from the cell surface to the endoplasmic reticulum (ER) of a host target cell. To cause intoxication, CTA1 must be displaced from CTA2/CTB5 in the ER and is then transferred to the cytosol where it induces a diarrheal response by stimulating the efflux of chloride ions into the intestinal lumen. Protein disulfide isomerase (PDI), a resident ER oxidoreductase and chaperone, is involved in detaching CTA1 from the holotoxin. The PDI domain(s) that binds to CTA1 and precisely how this interaction is involved in CTA1 dissociation from the holotoxin are unknown. The goal of this project is to identify which domain(s) of PDI is responsible for binding to and dislodging CTA1 from the CT holotoxin. Through incorporation of ELISA, surface plasmon resonance (SPR), and Fourier transform infrared (FTIR) spectroscopy techniques in conjunction with a panel of purified PDI deletion constructs, this project aims to provide important molecular insight into a crucial interaction of the CT intoxication process.

Notes

If this is your Honors thesis, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Thesis Completion

2015

Semester

Spring

Advisor

Teter, Kenneth

Degree

Bachelor of Science (B.S.)

College

College of Medicine

Department

Biomedical Sciences

Subjects

Dissertations, Academic -- Medicine; Medicine -- Dissertations, Academic

Format

PDF

Identifier

CFH0004792

Language

English

Access Status

Open Access

Length of Campus-only Access

3 years

Document Type

Honors in the Major Thesis

Share

COinS