Abstract
Malaria afflicts about 500 million people worldwide thus causing significant global economic toll. The drugs available to treat the disease are rapidly losing their efficacy because of widespread prevalence of drug resistant parasites. Thus there is an urgent need to discover novel malaria therapeutics. This research is focused on to study the properties of a novel naturallike synthetic scaffold and analyze its selectivity, and cellular mechanism of action in Plasmodium falciparum. We have identified a novel compound, 3-amino-2-piperidinequinoline (APQ), which we termed UCF401. APQ demonstrated IC[sub50] at submicromolar concentrations against Plasmodium falciparum using the SYBR Green-I fluorescence assay measuring cellular proliferation. This compound also demonstrated low cytotoxicity against the NIH3T3 and HEPG2 cells using MTS assays, showing an IC50 of 174 [micro]M and 125 [micro]M respectively, suggesting of excellent selectivity. We evaluated the compliance of APQ with Lipinski's parameters and determined the in vitro physicochemical profiles of the compound. Our results show that APQ is a Lipinski parameter compliant and has good physicochemical properties. The cellular mechanism of action of APQ was characterized through the assessment of the effects of the compound at different stages of the parasite's intraerythrocytic life cycle. This assay was done by treating a synchronized cell line with the compound at 5X the IC50 value and then imaging the cells at 12-hour intervals. We found that APQ arrests parasite development at the trophozoite stage. In addition we determined that APQ is parasitocidal after a 96 h exposure. These results demonstrate that APQ can be considered as a validated hit and/or early lead.
Notes
If this is your Honors thesis, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Thesis Completion
2014
Semester
Spring
Advisor
Chakrabarti, Debopam
Degree
Bachelor of Science (B.S.)
College
Burnett School of Biomedical Sciences
Department
Biomedical Sciences
Subjects
Dissertations, Academic -- Medicine; Medicine -- Dissertations, Academic
Format
Identifier
CFH0004593
Language
English
Access Status
Open Access
Length of Campus-only Access
5 years
Document Type
Honors in the Major Thesis
Recommended Citation
Valor, Cristhian, "3-Amino-2-Piperidinequinoline A Novel Natural Product-Inspiried Synthetic Compound with Antimalarial Activity" (2014). HIM 1990-2015. 1831.
https://stars.library.ucf.edu/honorstheses1990-2015/1831