Abstract

Tuberculosis (TB) is a respiratory disease caused by Mycobacterium tuberculosis (Mtb) that kills around 1.3 million people annually. Multi-drug resistant TB (MDR-TB) strains are increasingly encountered, in part resulting from shortcomings of current TB drug regimens that last between six to nine months. Patients may stop taking the antibiotics during their allotted regimen, leading to drug resistant TB strains. Novel drug screening platforms are therefore necessary to find drugs effective against MDR-TB. In order to discover compounds that target under-exploited pathways that may be essential only in vivo, the proposed screening platform will use a novel approach to drug discovery by blocking essential protein-protein interactions (PPI). In Mtb, PPI can be monitored by mycobacterial protein fragment complementation (M-PFC). This project will re-engineer the M-PFC assay to include the red fluorescent mCherry reporter for increased efficiency and sensitivity in high-throughput screening applications. To optimize the mCherry assay, we have developed fluorescent M-PFC reporter strains to monitor distinct PPI required for Mtb virulence: homodimerization of the dormancy regulator DosR. A drug screen will then identify novel compounds that inhibit this essential PPI. The screen will involve positional-scanning combinatorial synthetic libraries, which are made up of chemical compounds with varying side chains. This work will develop novel tools for TB drug discovery that could identify new treatments for the emerging world threat of MDR-TB.

Notes

If this is your Honors thesis, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Thesis Completion

2015

Semester

Spring

Advisor

Rohde, Kyle

Degree

Bachelor of Science (B.S.)

College

College of Medicine

Department

Biomedical Sciences

Subjects

Dissertations, Academic -- Medicine; Medicine -- Dissertations, Academic

Format

PDF

Identifier

CFH0004785

Language

English

Access Status

Open Access

Length of Campus-only Access

5 years

Document Type

Honors in the Major Thesis

Share

COinS