Heat transfer augmentation in a rectangular duct characterized by an impinging jet inlet : design of experiment
Abstract
Energy is one of the most important engineering challenges of this time. Gas turbine engines a,re responsible for nearly twenty-percent of all electricity produced in the United States today. A small increase in the operating efficiency of these engines could lead to massive reduction in the emission of greenhouse gases into the atmosphere as well as the financial burden on the average homeowner paying the monthly energy bill. In order to improve the efficiency of the engine, the Turbine Inlet Temperature of the hot gas coming from the combustor is continually increased. This requires increasingly advanced active cooling methods to maintain component life in the hot stages of the turbo machine.
In this study, a complete experiment is developed for accurate testing of the complex heat transfer and aerodynamic characteristics present in the active cooling design applied to the transition duct of a land-based gas turbine. The transition duct is the component that channels the hot gases from the combustor to the first stage of the turbihe. It is in contact with the hottest mainstream gas flow in the entire machine. The unique cooling design applied to this component is a combination the three main cooling methods. It is characterized by an impinging jet inlet, which splits into two identical channels flowing in exactly opposite directions. The flow travels through these channels, cooling the hot surfaces of the duct through which they are formed. At the flow exit, it is expelled into the hot gas stream flowing from the can-annular combustor to the turbine stage. The channel exit provides a thin film of cool air coverage that protects the metal surface from the harsh temperatures of the hot gas.
Notes
This item is only available in print in the UCF Libraries. If this is your thesis or dissertation, you can help us make it available online for use by researchers around the world by STARS for more information.
Thesis Completion
2009
Advisor
Kapat, Jayanta
Degree
Bachelor of Science (B.S.)
College
College of Engineering and Computer Science
Degree Program
Mechanical Engineering
Subjects
Dissertations, Academic -- Engineering and Computer Science;Engineering and Computer Science -- Dissertations, Academic
Format
Identifier
DP0022407
Language
English
Access Status
Open Access
Length of Campus-only Access
None
Document Type
Honors in the Major Thesis
Recommended Citation
Slabaugh, Carson D., "Heat transfer augmentation in a rectangular duct characterized by an impinging jet inlet : design of experiment" (2009). HIM 1990-2015. 807.
https://stars.library.ucf.edu/honorstheses1990-2015/807