Keywords
Clostridioides difficile; Clostridium difficile; Fecal microbiota transplant; nosocomial infection
Abstract
Clostrioides difficile is a common cause of nosocomial (hospital-acquired) infections. Patients receiving antibiotic treatment experience dysbiosis of gut microbiota, and C. difficile, normally held in check by the various other organisms, takes this opportunity to propagate. Symptoms of infection generally include diarrhea, colitis, dehydration, and fever. Understanding that C. difficile generally only causes illness when it is the dominant bacterium (i.e. when growth is relatively unchecked by other microbes), it is appropriate to investigate potential competitive organisms that may be introduced after antibiotic courses or during active C. difficile infection to effectively displace it. Fecal samples from the University of Central Florida Lift fecal collection station were aseptically plated onto modified cycloserine cefoxitin fructose agar (CCFA). Visually remarkable colonies (certain colonies that looked unique in comparison to others) were restreaked on new plates of the same media to verify growth, then transferred to brain heart infusion-supplemented (BHIS) plates for propagation. Colonies were inoculated in glycerol stocks for storage, then grown in BHIS liquid media to prepare for identification. Genomic extraction was performed on each sample, and spectrophotometric quantification and gel electrophoresis were executed to confirm successful extraction. Genomic samples will be sent to an external laboratory for identification via polymerase chain reaction and Sanger sequencing.
We hypothesize that at least one bacterial strain from the fecal collection station will potentially inhibit C. difficile infection. Should such an organism be identified, it follows that the efficacy of its application in conventional hospital settings may be examined. Current regulation of fecal microbiota transplants, an effective therapeutic practice, is cumbersome, and changing the classification of fecal transplants may improve timeliness and effectiveness of treatment.
Thesis Completion Year
2024
Thesis Completion Semester
Spring
Thesis Chair
Self, William
College
College of Medicine
Department
Burnett School of Biomedical Sciences
Thesis Discipline
Biomedical Sciences
Language
English
Access Status
Open Access
Length of Campus Access
None
Campus Location
Orlando (Main) Campus
STARS Citation
Davis, Justin, "Clostridioides difficile: Identification of Rival Organisms & Evaluation of Non-Antibiotic Treatment Implementation" (2024). Honors Undergraduate Theses. 55.
https://stars.library.ucf.edu/hut2024/55
Included in
Bacteria Commons, Bacterial Infections and Mycoses Commons, Digestive System Diseases Commons, Medical Microbiology Commons