Keywords

Stability

Abstract

Systems that operate in airborne environments and rely on the resolution provided by optical sensors require a stabilization system to isolate the line-of-sight (LOS) from the operating environment. For systems employing television sensors, stabilization accuracy is of prime importance in maintaining sufficient picture resolution to allow target identification and recognition at maximum ranges. The development of system models that accurately predict stabilization performance is important both in design trade-offs and in the system design and testing [l]. Two basic concepts are available for achieving LOS stabilization; momentum stabilization which employs a spinning mass and rate stabilization which utilizes inertial rate sensors. Previously rate stabilized platforms have been employed for high performance laser designator systems mounted in aircraft while momentum stabilized platforms have been used on tactical missiles. Rate stabilized platforms have not been used often in tactical missiles due to their higher cost and the lack of high performance stabilization requirements over large field-of-regards on the missile seekers. This paper develops the system models necessary to evaluate the LOS stabilization performance for either concept. To demonstrate the validity of the models derived, a case study is presented covering both momentum and rate stabilized systems which is verified with simulation results.

Graduation Date

1975

Degree

Master of Science (M.S.)

College

College of Engineering

Degree Program

Engineering

Format

PDF

Pages

60 p.

Language

English

Rights

Written permission granted by copyright holder to the University of Central Florida Libraries to digitize and distribute for nonprofit, educational purposes.

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Identifier

DP0004428

Subjects

Stability

Collection (Linked data)

Retrospective Theses and Dissertations

Accessibility Status

Searchable text

Included in

Engineering Commons

Share

COinS