Keywords

Heat Transmission; Microelectromechanical systems

Abstract

Recent advances in micro-fabrication technology have ushered a new era in miniaturization of chemical, environmental and energy systems. This foreseeable trend towards miniaturization in chemical, environmental and mechanical systems is expected to revolutionize the ways the human life is being perceived today. The high volume and mass reproducibility is seen as the striking aspect of micro-fabrication based miniature systems, offering economies far exceeding than the economies of scale obtained in large plants. The focus of this thesis work is directed at the thermodynamic feasibility and preliminary prototype design for a meso-scale refrigerator. Miniaturization to sub-centimeter domain will enable configuring these refrigerator units as sheet architectures integrated in layers, facilitating efficient local control of temperature. In the design abstraction, the entire refrigeration unit, comprising motor-compressor, evaporator, condenser, valves and fluidic control, is to be fabricated from several layers of bonded silicon wafers. The material treated in this thesis provides a perspective on the actuation mechanism of the integrated rotor-compressor through an axial-drive high-throughput variable capacitance electrostatic disk motor and underlying stator assembly. The design optimization of the motor actuation dynamics to extract optimal set of design parameters is provided to yield reasonably good output power of the compressor.

Graduation Date

1999

Semester

Summer

Advisor

Sundaram, Kalpathy

Degree

Master of Science (M.S.)

College

College of Engineering

Department

Electrical and Computer Engineering

Format

PDF

Language

English

Rights

Written permission granted by copyright holder to the University of Central Florida Libraries to digitize and distribute for nonprofit, educational purposes.

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Identifier

DP0017507

Subjects

Dissertations, Academic -- Engineering; Engineering -- Dissertations, Academic

Accessibility Status

Searchable text

Share

COinS