Abstract
The optical response of the photorefractive crystals KNbO3:Ta, KNbO3:Fe, LiNbO3:Fe, and nominally pure BaTiO3 is investigated. In the experiment, a holographic grating is built in the crystal under investigation via a two-wave mixing scheme that utilizes the signal-processing capacities of two acousto-optic Bragg cells. The dynamic interaction of the Bragg cells with the photorefractive grating causes a heterodyned RF signal to appear on the output laser beam, enabling the real-time, direct measurement of the amplitude and phase of the space-charge fields in the crystal. Experimental results are presented for the amplitude and phase of the space-charge fields, the diffraction efficiency, and the grating time constant as a function of spatial frequency.
Quantitative understanding of some of the fundamental processes and material properties responsible for the optical response is gained through comparison of the measured data to theoretical models. In this analysis, the diffusion and photovoltaic transport lengths, Debye screening length, net trap concentration, and net conductivity factor are determined.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
1991
Semester
Spring
Advisor
Moharam, M. G.
Degree
Master of Science (M.S.)
College
College of Engineering
Department
Electrical Engineering
Degree Program
Electrical Engineering
Format
Pages
75 p.
Language
English
Rights
Written permission granted by copyright holder to the University of Central Florida Libraries to digitize and distribute for nonprofit, educational purposes.
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
Identifier
DP0022762
Subjects
Dissertations, Academic -- Engineering; Engineering -- Dissertations, Academic
STARS Citation
Lawler, William B., "Photorefractive Materials for Optical Signal Processing" (1991). Retrospective Theses and Dissertations. 3865.
https://stars.library.ucf.edu/rtd/3865
Accessibility Status
Searchable text