Chemomechanical Effects in Wear Processes
Abstract
Efforts to understand the effects of chemically active environments on the mechanical properties of metals and nonmetals have received considerable attention in recent years. Ductility and related properties are known to be affected by exposure to specific environments, and several independent investigations have attempted to explain these effects with emphasis on interactions of environmental species with near surface layers of the material. In metals, emphasis has been placed on explaining these effects by surface energy, surface charge and species adsorption interactions with near surface layers. Also, the effects of surface films, such as oxides, are thought to influence the outcome of these interactions. It is proposed that these phenomena elicit chemomechanical effects, or effects on near surface dislocation generation and motion, and the implication that fracture and wear processes may be significantly affected is apparent. Though much has been theorized, very little about these explanations have been elucidated due to the limited amount of research that has been conducted. This study introduces an apparatus of indigenous design utilized with the intent of demonstrating these effects during wear processes. The effects were demonstrated for aluminum and nickel plates in sliding contact with a hard SiC counterface. Results indicate that the influences of active electrolytes on metals go beyond corrosive wear explanations. Chemomechanical effects in wear are demonstrated, as it is shown that applied polarization and axial stress affect metal wear rate in certain environments. Further, these effects support near surface dislocation motion influences by surface charge and adsorbed species interactions which may be synergistically complex. The potential impact on improving the efficiency of metal removal (machining) processes is well recognized, and is likely to provide the impetus for continued research in this area.
Notes
This item is only available in print in the UCF Libraries. If this is your thesis or dissertation, you can help us make it available online for use by researchers around the world by STARS for more information.
Graduation Date
1990
Semester
Fall
Advisor
Desai, Vimal H.
Degree
Master of Science (M.S.)
College
College of Engineering
Department
Mechanical Engineering and Aerospace Sciences
Format
Language
English
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
Identifier
DP0027278
Subjects
Dissertations, Academic -- Engineering; Engineering -- Dissertations, Academic
STARS Citation
Gray, Frederick C., "Chemomechanical Effects in Wear Processes" (1990). Retrospective Theses and Dissertations. 3992.
https://stars.library.ucf.edu/rtd/3992
Accessibility Status
Searchable text