Abstract
Data compression is the reduction of redundancy m data representation in order to decrease storage and communication costs. Data compression techniques have been used in practice primarily through software implementations which fail to meet the speed and performance requirements of current and future systems. This Ph.D. dissertation presents a set of hardware algorithms for compression and decompression techniques and the results of detailed simulations performed to quantify the effects of incorporating such hardware in various architectural environments. A new pipelined algorithm for data compression applicable to static binary encoding schemes is presented. A fast hardware algorithm for decompression that uses a balanced binary tree structure to eliminate code storage tables is introduced. Hardware algorithms are presented for the multi-group compression technique, ii run-length encoding method and an enhanced version of arithmetic coding scheme. These algorithms are suitable for VLSI implementation and can provide speeds that are an order of magnitude higher than currently obtainable encoding speeds. The design and implementation of a prototype compression chip for the Huffman's encoding scheme is presented. The chip yields an estimated compression rate of 10 million characters per second. The effect of employing compression hardware on the performance of a general purpose computer system and a special purpose back-end multiprocessor machine is analyzed by constructing detailed simulation models. Simulation results establish that our VLSI chips for compression and decompression cause significant improvements in system performance.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
1988
Semester
Summer
Advisor
Mukherjee, Amar
Degree
Doctor of Philosophy (Ph.D.)
College
College of Arts and Sciences
Department
Computer Science
Format
Pages
178 p.
Language
English
Rights
Public Domain
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
Identifier
DP0025762
Subjects
Arts and Sciences -- Dissertations, Academic; Dissertations, Academic -- Arts and Sciences
STARS Citation
Ranganathan, N., "Hardware algorithms for data compression" (1988). Retrospective Theses and Dissertations. 4329.
https://stars.library.ucf.edu/rtd/4329
Accessibility Status
Searchable text