Abstract
The relationship between the built-in potential and the energy bands in a heterojunction device is defined using the Anderson model. Based on this model, Poisson's equation for a nonhomogeneous semiconductor device in thermal equilibrium is derived and solved analytically for the special case of a doubly intrinsic abrupt heterojunction. Several numerical methods of solving Poisson's equation for general cases are explored to find the most efficient method. The validity of the chosen numerical method is tested against both the analytical solution for a Ge/GaAs doubly intrinsic diode and recently published results from similar numerical simulation studies. A p-i-n superlattice device is then analyzed, and the resulting numerical solutions of the electrostatic potential, electric field, carrier concentration, charge density, and energy band profiles are given. These results are utilized by other simulation software which yields the resonant energy levels in the conduction band of the p-i-n superlattice and their associated probability density functions.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
1988
Semester
Fall
Advisor
Brown, Harold K.
Degree
Master of Science (M.S.)
College
College of Engineering
Department
Electrical Engineering and Communication Sciences
Format
Pages
136 p.
Language
English
Rights
Public Domain
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
Identifier
DP0025765
Subjects
Dissertations, Academic -- Engineering; Engineering -- Dissertations, Academic
STARS Citation
Rollins, Norman Todd, "Numerical solutions of poisson's equation in a superlatice device" (1988). Retrospective Theses and Dissertations. 4332.
https://stars.library.ucf.edu/rtd/4332
Accessibility Status
Searchable text