Abstract

This research addresses emissions of hexavalent chromium mist from hard chromium electroplating operations. Most of these emissions are typically captured by a ventilation stack and directed to a pollution control device; those which escape capture are called fugitive emissions. Releases of toxic materials such as hexavalent chromium must be reported annually to the Environmental Protection Agency (EPA) under provisions of the Superfund Amendments and Reauthorization Act (SARA) Title III of 1986 via the Toxic Release Inventory (TRI), Form R. The objectives were: (1) to provide estimates of fugitive hexavalent chromium emissions for the completion of Form R; and (2) to develop a predictive model for stack and fugitive emissions versus process and ventilation parameters. The database for stack emissions included published results from EPA studies. Fugitive release data were generated by field characterization at two operating facilities. Supplemental data for stack releases were also obtained during this field activity. The fugitive releases were documented to represent a small portion of the total atmospheric discharge; in most instances, the fugitive releases were less than the detection capability of the sampling/analytical protocols. Stack releases were successfully correlated with a measure of production activity (ampere-hours), production capacity (mass of chromium in the process bath), tank dimensions (plating bath surface area), and ventilation efficiency (ventilation slot area). This effort was supported by the EPA in the form of a cooperative agreement with the American Electroplaters and Surface Finishers Society (AESF).

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

1992

Semester

Summer

Advisor

Wayson, Roger L.

Degree

Master of Science (M.S.)

College

College of Engineering

Department

Civil and Environmental Engineering

Degree Program

Environmental Engineering

Format

PDF

Language

English

Rights

Written permission granted by copyright holder to the University of Central Florida Libraries to digitize and distribute for nonprofit, educational purposes.

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Identifier

DP0008174

Accessibility Status

Searchable text

Share

COinS