Keywords

Digital electronics, Microprocessors, Random number generators

Abstract

The continuous improvement in the speed of digital components in conjunction with reduction of size has brought about a revolutionary age of microprocessors. Mathematical functions, which at one time could only be implemented by complex analog circuitry, can now be easily implemented via microprocessors and high density digital components. Principles of random number generation must be understood in order to implement pseudo-random algorithms in a digital random frequency generator (DRFG) design. Chapter 1 is a discussion of several types of random number algorithms which have been used in the past and outlines the deficiencies and advantages associated with each individual algorithm. In particular, problems such a cycling and maximum period deficiency are discussed. The discussions in Chapter 1 lead to the selection of a random number algorithm which can be used in a DRFG design. There are other characteristics which should be observed in the evaluation of acceptable random number algorithms. In Chapter 2 three tests are described which can be applied in order to test the algorithm for the well-known uniformity and independence criteria. These tests are implemented in a Fortran program which is used to evaluated the algorithm selected in Chapter 1. The random number generator evaluation program (RNGEP) listing is presented in Appendix B. The results of the tests applied to the DRFG random number algorithm are presented in Appendix C.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

1984

Semester

Fall

Advisor

Miller, Richard N.

Degree

Master of Science (M.S.)

College

College of Engineering

Degree Program

Engineering

Format

PDF

Pages

60 p.

Language

English

Rights

Public Domain

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Identifier

DP0015588

Accessibility Status

Searchable text

Included in

Engineering Commons

Share

COinS