Keywords

Fluid mechanics, Two phase flow

Abstract

Based on a two-phase boundary layer approach, a computational model is proposed to estimate the thickness of the waterfilm due to rain on the upper surface of an airfoil. The coupling between the air boundary layer and the water film is established by the conservation of mass and momentum at the interface. By a simple coordinate transformation, the interface is conformed to the finite difference grid system. Trajectory analysis of a raindrop of 1 mm diameter shows that the impingement of drops is high near the leading edge of the airfoil and decreases downstream. The finite difference equations of air/waterfilm are based on a Crank Nicholson scheme. The solution of finite difference equations at the initial station indicates a film thickness of 0.01 mm. Marching downstream along the surface of the airfoil gives raise to stability problems in the finite difference equations.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

1985

Semester

Summer

Advisor

Anderson, Loren A.

Degree

Master of Science (M.S.)

College

College of Engineering

Department

Engineering

Format

PDF

Language

English

Rights

Public Domain

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Identifier

DP0017018

Accessibility Status

Searchable text

Included in

Engineering Commons

Share

COinS