Abstract
Presented are two new methods based on entropy for reconstructing images compressed with the Discrete Cosine transform. One method is based upon a sequential implementation of the Minimum Relative Entropy Principle; the other is based upon the Maximum Entropy Principle. These will be compared with each other and with the conventional method employing the Inverse Discrete Cosine transform. Chapter 2 describes the traditional use of the Discrete Cosine transform for image compression. Chapter 3 explains the theory and implementation of the entropy-based reconstructions. It introduces a fast algorithm for the Maximum Entropy Principle. Chapter 4 compares the numerical performance of the three reconstruction methods. Chapter 5 shows the theoretical convergence limit of the iterative implementation of the Minimum Relative Entropy Principle to equal the limit of the convergence of the Maximum Relative Entropy method. Preliminary results of this thesis were presented at Southeastern '87 in Tampa. Final results will be presented at the Annual Meeting of the American Optical Society in Rochester on October 19, 1987.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
1987
Semester
Fall
Advisor
Tzannes, Nicolaos S.
Degree
Master of Science (M.S.)
College
College of Engineering
Format
Pages
135 p.
Language
English
Rights
Public Domain
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
Identifier
DP0021492
STARS Citation
Bodenschatz, John S., "Image Reconstruction After Transform Coding Using Relative Entropy and Maximum Entropy" (1987). Retrospective Theses and Dissertations. 5095.
https://stars.library.ucf.edu/rtd/5095
Contributor (Linked data)
University of Central Florida. College of Engineering [VIAF]
Accessibility Status
Searchable text