Keywords

Coal -- Environmental aspects, Coal slurry pipelines, Water -- Pollution

Abstract

The water quality characteristics of a coal slurry were found to vary widely, depending upon the coal used and the use of a corrosion inhibitor. The coal-water interactions were evaluated in a pilot-plant closed-loop coal slurry pipeline. Pulverized coal from eastern Kentucky and tap water were slurred and pumped through a 40 foot (12.2 m) pipe loop for ten days. Slurry samples were collected at 3 hours, 7 hours, 1 day, 2 days, 4 days, 7 days and 10 days from the start of a run. The samples were filtered and analyzed for 29 water quality parameters, including 15 metals. Two runs were performed without adding a corrosion inhibitor and two runs were performed with the addition of a corrosion inhibitor. The coal slurry filtrate contained high levels of sulfates, total dissolved solids, conductivity, acidity, iron, magnesium, manganese, lead and aluminum. The pH dropped initially, depending upon the percent sulfur in the dry coal and the alkalinity in the slurry, but returned to 6-7 after 10 days in the pipeline. Metal concentrations were a function of the pH, which affected solubility. Organics in the filtrate were at low levels. The addition of a corrosion inhibitor increased the concentrations of most parameters.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

1983

Advisor

Cooper, C. David

Degree

Master of Science (M.S.)

College

College of Engineering

Degree Program

Engineering

Format

PDF

Pages

112 p.

Language

English

Rights

Public Domain

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Identifier

DP0014096

Accessibility Status

Searchable text

Included in

Engineering Commons

Share

COinS